

 Navigation

 	
 index

 	
 next |

 	Dyna 0.4 git=fb40b6a
 documentation

Welcome to Dyna!

Dyna is an new declarative programming language developed at
Johns Hopkins University [http://cs.jhu.edu].

This site documents the new version being developed at http://github.com/nwf/dyna.
The new version has been used to teach but is not yet complete or
efficient; you may file issues at http://github.com/nwf/dyna/issues.
An older design with a fairly efficient compiler can be found at http://dyna.org.

Warning

Please be advised that this documentation, the implementation,
and indeed the language itself are rapidly changing.

Warning

Some programs may not terminate. Control-C will
interrupt the program’s execution.

Contents:

	Tutorial

	User Manual

	Specification of the Dyna Language

	Bibliography

Indices and tables

	Dyna Glossary

	Index

	Search Page

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

Tutorial

Warning

This tutorial is incomplete.

	Hello World
	Running Hello World

	The Interactive Interpreter

	Shortest Path in a Graph
	Encoding the Input

	Run the program

	Explaining Answers

	Understanding The Program
	Inference Rules

	Inference Rules As Equations

	Why These Particular Equations?

	Deriving The Graph From Rules

	Endnotes

	When Things Go Wrong
	Impossible Requests

	Non-Termination
	Productive Nontermination
	Fixing The Fib Example

	Counting To Infinity

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	Tutorial

Hello World

Welcome to the Dyna tutorial!

It is traditional to start by writing and running a program that prints
hello world. Downlad Dyna and follow the instructions in
README.md to build it. Then, look at the file
examples/helloworld.dyna (or here [https://www.github.com/nwf/dyna/blob/master/examples/helloworld.dyna]).
It should contain:

goal += hello*world. % an inference rule for deriving values
hello := 6. % some initial values
world := 7.

This does not print hello world. It was the closest we could come. Dyna is a
pure language. It focuses on computation, and sniffs haughtily at mundane
concerns like input and output.

Running Hello World

After building Dyna, you may ask our interpreter to run helloworld by
executing

./dyna examples/helloworld.dyna

At this point, you should see:

Charts
============
goal/0
=================
goal := 42

hello/0
=================
hello := 6

world/0
=================
world := 7

What has happened? Dyna has compiled and executed the program requested and
printed out its conclusions. Notably, the item goal is seen to have
value 42. Whenever the runtime prints all of its conclusions, they are
organized by functor

The Interactive Interpreter

Dyna also comes with an interactive interpreter. This
mode allows you to

	append new rules to the program and observe the consequences

	make custom queries of the conclusions

	visualize the information flow within the program

To run a program interactively, add -i to the dyna command line:

./dyna -i examples/helloworld.dyna

In addition to the chart printout above, you will be greeted with the
interpreter’s prompt, :-. Interactive help is available by typing
help at the prompt.

Let’s try adding a new rule to the program. Suppose that our goal is not
merely to multiply hello by world but to additionally square
hello. At the prompt, type:

goal += hello**2.

The interpreter will respond with:

goal := 78

Here you can see that goal‘s value has changed to be 78. But wait,
is that right? We can check by typing at the prompt:

query hello**2

bug

The output for the query is not especially friendly. There’s a
bug [https://github.com/nwf/dyna/issues/1] filed about that and it’s being worked on.

If we modify one of the inputs hello or world, by typing:

hello += 1.

The interpreter will respond with:

goal := 120
hello := 8
out(3) := [(64, {})]

So not only is it telling us that hello has changed, and that goal
now takes on a new value as a result, but it reminds us that the query we
ran earlier also has a new value.

At this point, we invite you to continue the tutorial by finding the
shortest path.

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	Tutorial

Shortest Path in a Graph

We hope that Dyna offers the shortest ever shortest path program:

path(start) min= 0.
path(B) min= path(A) + edge(A,B).
goal min= path(end).

This program already highlights one of the features of Dyna: the first rule
and last rules are dynamic: the value of the start item determines
which vertex in the graph is used as the start, and similarly the value of
end is used to select which vertex matters to goal.

This program is available in examples/dijkstra.dyna (or
here [https://www.github.com/nwf/dyna/blob/master/examples/dijkstra.dyna]).

Encoding the Input

The following input graph is adapted from Goodrich & Tamassia’s data
structures textbook. It shows several available flights between U.S.
airports, with their distances in miles. We would like to get from a
friend’s house, 10 miles from Boston (BOS), to our destination, 20 miles
from Chicago (ORD).

[image: digraph foo { graph[size="7,2",rankdir="LR"] BOS -> JFK [label=187] BOS -> MIA [label=1258] JFK -> DFW [label=1391] JFK -> SFO [label=2582] JFK -> MIA [label=1090] MIA -> DFW [label=1121] MIA -> LAX [label=2342] DFW -> ORD [label=802] DFW -> LAX [label=1235] ORD -> DFW [label=802] LAX -> ORD [label=1749] FriendHouse -> BOS [label=10] ORD -> MyHouse [label=20] }]

Shortest Paths

If we work things out by hand (or just ask Dyna) we will discover
that the shortest path to each node from “FriendHouse” is

	Destination
	Total

	FriendHouse
	0

	BOS
	10

	JFK
	197

	MIA
	1268

	DFW
	1588

	ORD
	2390

	MyHouse
	2410

	SFO
	2779

	LAX
	2823

This is encoded into Dyna, using strings to identify vertices of the graph,
thus:

edge("BOS","JFK") := 187.
edge("BOS","MIA") := 1258.
edge("JFK","DFW") := 1391.
edge("JFK","SFO") := 2582.
edge("JFK","MIA") := 1090.
edge("MIA","DFW") := 1121.
edge("MIA","LAX") := 2342.
edge("DFW","ORD") := 802.
edge("DFW","LAX") := 1235.
edge("ORD","DFW") := 802.
edge("LAX","ORD") := 1749.

edge("FriendHouse","BOS") := 10.
edge("ORD","MyHouse") := 20.

edge pairs that are not specified are said to be null; that is,
they have no value, and can be thought of as the identity of the aggregator
min=, or \(+\infty\), meaning “You can’t get there directly from
here.”

And of course, we need to specify whence we come and where it is we would
like to end up:

start := "FriendHouse".
end := "MyHouse".

Run the program

We can run this program in the interpreter:

./dyna -i examples/dijkstra.dyna

We are met with the conclusions, which include all the data we fed in as
well as a pile of path assertions. Of course, that’s not so useful,
necessarily, so let’s just ask for the answer:

:- query goal
out(0) := [(2410, {})]

As we can see, the total weight of the shortest path is 2410. What
happens, though, if we realize that we will be by the airport anyway?

:- start := "BOS".
=============
goal := 2400
out(0) := [(2400, {})]
path('BOS') := 0
path('DFW') := 1578
path('FriendHouse') := None
path('JFK') := 187
path('LAX') := 2813
path('MIA') := 1258
path('MyHouse') := 2400
path('ORD') := 2380
path('SFO') := 2769
start := 'BOS'

And just like that, the total path weight from start to end is now
2400. The system also tells us a number of potentially interesting
things:

	The system has in fact computed the revised path costs to each other
vertex.

	There is no path from "BOS" to "FriendHouse" (thus None).

	A query we had made earlier has changed its answer.

Explaining Answers

bug

We do not yet have a good mechanism implemented, though it’s just a
matter of time. See issue 1 [https://github.com/nwf/dyna/issues/1].

Understanding The Program

Simply stated, this program looks for all paths from the vertex indicated by
start. Formally, the technique currently used is called agenda-driven
semi-naive forward chaining [1] .

Inference Rules

The first inference rule states that there is no distance on the degenerate
path that does not go anywhere.:

path(start) min= 0.

Alternatively, there is a path to vertex B if there is a path to some
vertex A such that an edge connects A to B.:

path(B) min= path(A) + edge(A,B).

The final rule merely says that we are looking for the best path to the
vertex indicated by end.:

goal min= path(end).

Inference Rules As Equations

But what are the min= and + doing? In fact, the inference rules are
equations. They state how to find the values of all pathto and goal
items.

Those items have values just like the hello, world and goal
items in the previous example. But this program is more
complicated. It involves lots of different pathto items for different
airports, distinguished from one another by their arguments:
pathto("JFK"), pathto("MyHouse"), etc. These items may all have
different values.

Why These Particular Equations?

Assuming that each edge‘s value represents its length in the input graph,
the rules are carefully written so that pathto(V)‘s value will be the total
length of the shortest path from the start vertex to vertex V.

In principle, there are several ways to get to V: one can get there by
an edge from start or an edge from some other U. The min=
operator finds the minimum over all these possibilities. Think of it as
keeping a running minimum (just as += would keep a running total). In
particular, pathto(V) is found as
\(\mbox{min}(\mathtt{edge(start},V), \mbox{min}_U \mathtt{pathto}(U)+\mathtt{edge}(U,V))\)
which involves minimizing over all possible U.

If there are no paths to V, then pathto(V) is a minimum over no
lengths at all. Dyna specifies that items receiving no inputs take on the
special value null, which is the identity of every aggregator and
a zero of every expression. Since we aggregate answers with min=,
null approximates \(+\infty\).

Deriving The Graph From Rules

There’s nothing that mandates that edge weights be the base case; we
could also derive edge facts from other facts, such as position and
reachability. An example is available in examples/dijkstra-euclid.dyna
(or here [https://www.github.com/nwf/dyna/blob/master/examples/dijkstra-euclid.dyna]).

Endnotes

	[1]	There are a multitude of inference algorithms for logic
programming. We would like to think that [filardo-eisner-2012] provides
a good overview as well as explaining the basics of what will become
Dyna 2’s inference algorithm.

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	Tutorial

When Things Go Wrong

Impossible Requests

What happens if a Dyna program attempts to divide by zero, as in:

a += 1 / b.
b += 0.

If this is the entirety of the program and no changes are forthcoming
(e.g., we are not in interactive mode) then the semantics of this program
include division by zero, and so must be an error. What happens when we
attempt to run it? Our interpreter produces a chart with an annotation:

Charts
============
a/0
=================

b/0
=================
b := 0

Errors
============
because b is 0:
 division by zero
 in rule test.dyna:4:1-test.dyna:4:12
 a += 1 / b.

This last Errors display indicates that the answers available in the
Charts section is not reliable.

Caution

Any error is potentially global! While it might be possible
for some programs to more accurately track errors, currently our
implementation does not. The net effect of this is that if ever the
interpreter produces an Errors section, then the entire chart must be
considered suspect.

If we run the interactive interpreter and add the rule b += 1., the
error condition has cleared as it should. If we then add b += -1., it
will return.

Non-Termination

Productive Nontermination

As mentioned before, Dyna2 currently uses agenda-driven semi-naive forward
chaining for its reasoning. This algorithm has several excellent
theoretical properties, but suffers from a potentially show-stopping
problem: it might not stop.

A Dyna program which includes a definition of the Fibonacci numbers (e.g.,
examples/fib.dyna)

fib(1) += 1.
fib(2) += 1.
fib(X) += fib(X-1) + fib(X-2).

will compile and be accepted by the interpreter, but will attempt to prove
a fib item for every positive natural number! Clearly, this task is
going to take a while.

If your program does go away for longer than you expect, it is entirely
possible that it is caught in such an infinite loop. In that case, you may
send it a SIGINT by hitting Control-C. The interpreter will then print
out the chart as far as it had determined it. If this is far bigger than
expected, your program probably has a productive infinite loop.

Fixing The Fib Example

One way out of this problem is to impose a limit on the program, by writing
instead something like:

f(X) += f(X-1) + f(X-2) for X < lim.
lim := 10.

This will limit the system to proving the first lim Fibonacci numbers.
Of course, that can expand or contract as you define lim.

Counting To Infinity

Unfortunately, another kind of nontermination error can arise in cyclic
programs, which is not so easy to fix: the so-called count-to-infinity
problem.

If we were to have examples/dijkstra.dyna loaded in the interpreter and
then run

:- start := "NoSuch".

Where there is no such "NoSuch vertex, the interpreter will appear to be
pondering this change to the universe for “a while”, as we say. If we
interrupt it (with Control-C) after a while, the chart will contain, among
other things:

path/1
=================
path("DFW") := 10124432
path("LAX") := 10124063
path("MyHouse") := 10122046
path("NoSuch") := 0
path("ORD") := 10123630
path("SFO") := 2779

This arises from the fact that our graph contains a cycle:

edge("DFW","ORD") := 802.
edge("ORD","DFW") := 802.
edge("LAX","ORD") := 1749.

Note that it is also possible to “count to infinity” in other directions,
such as by counting down to \(-\infty\) or by approaching a finite
solution but as in Zeno’s paradox.

bug

There is, as of yet, no good solution to this problem; the best
work-around might just be to start the program over.

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

User Manual

	Pragmas
	Syntax
	Disposition
	More Detail
	Requesting Evaluation

	Disposition Defaults

	Operators
	Adding an operator

	Removing an operator

	Defaults

	Execution
	Insts and Modes

	Query Modes

	Builtins
	Aggregators

	Functions

	Constants

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	User Manual

Pragmas

Pragmas are used to pass a wide variety of information in to the system.
They are visually separated by begining with :-.

Syntax

Some pragmas alter the syntax of the language.

Disposition

In Dyna source code, there are two different things that the term f(1,2)
could mean:

	Construct the piece of data whose functor is f and has arguments
1 and 2, as in f(A,B) = f(1,2), which unifies A with 1
and B with 2.

	Compute the value of the f(1,2) item, as in f(1,2) + 3 or
Y is f(1,2).

It is always possible to explicitly specify which meaning to use, by use of
the & and * operators (see Quote vs Eval), but this would
be tedious if it were the only solution. As such, we endow functors (of
given arity) with dispositions, which indicate, by default, how they would
like to treat their arguments.

Dispositions are specified with the :-dispos pragma, thus:

:-dispos g(&). % g quotes its argument.
:-dispos '+'(*,*). % + evaluates both arguments.

Now g(f(1,2)) + 1 will pass the structure f(1,2) to the g
function and add 1 to the result. Note that dispositions take effect
while the program is being parsed. That is, a program like:

:-dispos f(&).
goal += f(g(1)).
:-dispos f(*).
goal += f(g(2)).

specifies that goal has two antecedents: the f images of g(1)
and the g image of 2.

It is also possible to indicate that some terms should not be evaluated:

:-dispos &pair(*,*). % pair suppresses its own evaluation

In the case of disagreements, like pair(1,2) + pair(3,4), the preference
of the argument is honored.

Defaults

Absent any declarations, all functors are predisposed to evaluate their
arguments. Some functors (pair/2, true/0, and false/0)
suppress their own evaluation.

More Detail

Warning

This section is probably relevant only if you are a developer
of the Dyna compiler.

Requesting Evaluation

Just like it is possible to request that some functors not be evaluated even
when in evaluation context, it is additionally possible for functors to
request that they be evaluated even when the context is one of quotation:

:-dispos *f(*).

The neutral position of specifying neither & nor * before a pragma
is termed inherit, which means that the context or overrides apply. Under
the defaults above, this is the default position for all functors.

Disposition Defaults

It is possible to override the defaults, as well; at least one of us has a
stylistic preference for a more Prolog-styled structure-centric view of the
universe. The pragma:

:-dispos_def prologish.

will cause subsequent rules to behave as if all functors which start with an
alphanumeric character had had :-dispos f(&,...,&) asserted, while all
other functors had had :-dispos *f(*,...,*). There are, however, a few
built-in overrides to this rule of thumb, giving alphabetic mathematical
operators (e.g. abs, exp, ...) their functional meaning. See
src/Dyna/Term/SurfaceSyntax.hs [https://www.github.com/nwf/dyna/blob/master/src/Dyna/Term/SurfaceSyntax.hs]

The default default rules may be brought back in by either:

:-dispos_def dyna.
:-dispos_def.

Note that when chaning defaults, any manually-speficied :-dispos
pragmas remain in effect.

Operators

Dyna aims to have a rather flexible surface syntax; part of that goal is
achieved by allowing the user to specify their own operators.

As with Disposition, these pragmas take effect
while the program is being parsed.

bug

The ability to add and remove operators is not yet actually supported.

Adding an operator

The :-oper add pragma takes three arguments: the fixity, priority, and
lexeme that makes up the operator. Fixities are specified as pre,
post or in. In the case of in, one of left, right, or
non must be specified for the associativity. Priorities are natural
numbers, with higher numbers binding tighter. Lexemes are either bare words
or singly-quoted functors.

Examples:

:-oper add in left 6 + .
:-oper add pre 9 - .

Removing an operator

The :-oper del pragma may be used to remove all previously added forms
of a given operator.

Defaults

The default operator table is, hopefully, more or less what you might
expect and follows the usual rules of arithmetic.

bug

For the moment, the source is the spec. See the source in
src/Dyna/Term/SurfaceSyntax.hs [https://www.github.com/nwf/dyna/blob/master/src/Dyna/Term/SurfaceSyntax.hs] for full details.

Execution

On the other hand, some pragmas impact the execution of the system.

Insts and Modes

Following the [MercuryLang] syntax, we allow the user to give names to
instantiation states and modes:

:-inst name(args) ==
:-inst mode(args) == ... >>

Query Modes

A Query mode specifies that a particular backward-chaining operation is to
be available to the system. These capture the change in instantiation
state, determinism, and other properties of a query.

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	User Manual

Builtins

Aggregators

For aggregation, we offer

	Numerics: max=, min=, += (\(\sum\)), *= (\(\prod\))

	Logic: &= (\(\bigwedge\)), |= (\(\bigvee\)).

	A last-one-wins operation, :=. Formally, the last rule which
contributes a value determines the head item’s value. That is, a program
such as

a := 1.
a := 2 for d.

will give a the value of 1 if d is not provable or is not
true and 2 otherwise.

Functions

The following list of functions are guaranteed to be present, regardless of
backend chosen:

	The usual binary numeric operations: *, -, *, /,
mod (or %), and ** (for raising to a power).

	Some unary numeric operations: -, abs, log, and exp.

	Comparison operators: <, <=, ==, >=, >, and !=
(disequality).

	Logic operations: and (or &), or (or |), ^
(for exclusive or), and not (or !).

	Unification is written =. Prolog’s is operator is also available.

Warning

The distinction between = and == is that the latter evaluates
both of its arguments while the former does not. Meanwhile, is
is asymmetric, evaluating its right argument and not its left.

See examples/equalities.dyna
(or here [https://www.github.com/nwf/dyna/blob/master/examples/equalities.dyna]).

Constants

Integers, floats, and double-quoted strings all exist as primtives in the
language. Booleans are represented by the atoms true and false.

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

Specification of the Dyna Language

Introduction

What is Dyna?

Intended users

Key features

Relation to other work

How to read this specification

Organization

Notation

User comments

Coloring and formatting conventions

Cross-refs

Sidebars

Notifications

Links to examples

Links to issue tracker

Glossary/Index

Terms (i.e., ground terms)

Overview

Primitive terms

Booleans

Numbers

Strings

Escape codes

Blobs

Compound terms

Functors

Single quotes

Positional arguments

Operator syntax

Keyword arguments

List syntax

Reserved functors

$ convention

$error

$null

Dynabases

Full discussion in Frozen terms.

Frozen terms

Full discussion in Dynabases.

Patterns (i.e., non-ground terms)

Variables

Variable names

Underscores

Non-ground terms

Types

Type declarations

Typed variables

Co-inductive types

Possible future extensions

Guarded types? Nonlinear types? Parametric types?

Type coercion

Unification

Frozen terms

Dynabases

Overview

Items

Null items

Syntax for items

Brackets vs. parentheses

Quoting items with &

Evaluating terms with *

Queries

Simple queries

Complex queries

Expressions

Aggregating queries

Accessors

Query modes

Some discussion of current approach is in Pragmas.

Lambdas

Terms as dynabases

Updates

Update modes

Stability

Dynabase types

Extensions

Const declaration

Snapshots

Inspecting and modifying dynabases

Abstract API

Command line interface

Graphical interface

Programming interface

Dyna programs

Programs

File format

Rules

Definition

Aggregation

Semantics

Cycles

Errors

See discussion of current implementation in When Things Go Wrong.

Head destructuring

Dynabase literals

Syntax

Ownership

Semantics

Declarations

Some documentation of currently implemented declarations is in Pragmas.

Type declarations

Evaluation declarations

There is currently some documentation in Syntax.

Default arguments

Visibility declarations

Const

Import

Syntax declarations

Declaring new aggregators

Scripting commands

Include

Foreign function interface

Concrete syntax

Overview

Standard syntactic sugar

Default syntax table

Changing the syntax table

Printing

Readable printing

Prettyprinting

Standard library

There is currently some documentation in Builtins.

Generic operators and aggregators

Boolean operators and aggregators

Numeric operators and aggregators

Randomness

String operators and aggregators

Array operators and aggregators

Set operators and aggregators

Graph operators and aggregators

Other standard encodings

Inspecting program execution

$rule

Voodoo items

Reflection on types, modes, cost estimates, cardinality estimates, plans, etc.

Controlling program execution

Storage classes

Priorities

Query costs and plans

Features for learning

Foreign dynabases

Files

Processes

Sockets

Servers

Appendices

	Dyna Glossary

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

 	Specification of the Dyna Language

Dyna Glossary

	functor

	The constructor of a term, such as path in path(1,2).

	null

	The value of items that have no rules contributing aggregands.
Null annihilates expressions (e.g. \(\mbox{null} + 2\)
is \(\mbox{null}\)) and is the unit of aggregations
(e.g. \(\sum\{\mbox{null}, 1, \mbox{null}, 2\}\) is
just \(\sum\{1,2\}\)).

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	
 previous |

 	Dyna 0.4 git=fb40b6a
 documentation

Bibliography

	[filardo-eisner-2012]	Nathaniel W. Filardo and Jason Eisner.
A flexible solver for finite arithmetic circuits.
ICLP LIPIcs, 2012.
http://cs.jhu.edu/~jason/papers/#filardo-eisner-2012-iclp

	[eisner-filardo-2011]	Jason Eisner and Nathaniel W. Filardo.
Dyna: Extending Datalog for modern AI.
Datalog Reloaded, 2011.
http://cs.jhu.edu/~jason/papers/#eisner-filardo-2011

	[goodrich-tamassia]	Michael T. Goodrich and Roberto Tamassia.
Data Structures and Algorithms in Java.
ISBN 978-0470383261.
2010.

	[MercuryLang]	http://www.mercurylang.org

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 Navigation

 	
 index

 	Dyna 0.4 git=fb40b6a
 documentation

Index

 C
 | D
 | E
 | F
 | I
 | M
 | N
 | O
 | P
 | Q
 | S
 | T

C

 	

 	counting to infinity

D

 	

 	
 disposition

 	

 	pragma

E

 	

 	
 errors

 	

 	tutorial

F

 	

 	functor

I

 	

 	
 inst

 	

 	pragma

M

 	

 	
 mode

 	

 	pragma

N

 	

 	null

O

 	

 	
 operator

 	

 	pragma

 	

 	
 operators

 	

 	evaluate.

 	quote.

P

 	

 	
 pragma

 	

 	disposition

 	inst

 	mode

 	operator

 	query mode

Q

 	

 	qmode

 	
 query mode

 	

 	pragma

 	

 	quotation and evaluation

S

 	

 	
 Shortest Path

 	

 	Tutorial

 	

 	
 syntax

 	

 	quotation and evaluation

T

 	

 	
 Tutorial

 	

 	Hello World

 	Shortest Path

 	

 	
 tutorial

 	

 	errors

 Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.4.0

 _static/simple_dyna_logo.png

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Dyna 0.4 git=fb40b6a
 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.4.0

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/simple_dyna_logo_horiz.png
AV:- dyna.

spec/syntax.html

 Navigation

 		
 index

 		Dyna 0.4 git=fb40b6a
 documentation »

Syntax

This chapter defines Dyna’s concrete syntax.

Quote vs Eval

Relevant source files:

		src/Dyna/Analysis/ANF.hs [https://www.github.com/nwf/dyna/blob/master/src/Dyna/Analysis/ANF.hs]

		src/Dyna/Term/SurfaceSyntax.hs [https://www.github.com/nwf/dyna/blob/master/src/Dyna/Term/SurfaceSyntax.hs]

Dyna’s syntax has both nested terms (also called recursive terms) and
in-place evaluation. (Recall the discussion in
Disposition.) Managing the details in a way that is (ideally)
not too surprising to users requires some technical complexity.

Since this all takes place at parse time, the most upon which we can really
expect to key our decisions is the term’s functor and arity. Each
(functor,arity) pair may specify

		A self disposition, which may be one of evaluate, quote,
or inherit. No functors in Dyna (by default) use evaluate; it is
offered to facilitate the development of more Prolog-like syntaxes.

		For each argument, a argument disposition which may be either
evaluate or quote.

Additionally, there are two explicit operators defined in the language:

		A quotation operator, prefix unary &.

		An evaluation operator, prefix unary *.

When attempting to understand a term in a Dyna program, one must keep track
of:

		The argument disposition of the location where it occurs. Functors
specify this as per above; an aggregator will always place its head in a
quoted context and its body in an evaluation context.

		The number of * operators seen between the functor’s argument position
and the functor of the inner term.

		Whether or not the sequence of quotation and evaluation operators ends
with a quotation operator. Note that only the right end matters; that is,
&& has the same effect as **&.

		The self disposition of the inner functor.

The interpretation is then the first matching row in this table:

		Context
		Eval Operators
		Quoted?
		Self
		Effect

		Any
		0
		Yes
		Any
		Quotation (explicit at site)

		Any
		0
		No
		Quote
		Quotation (implicit from self)

		Any
		0
		No
		Evaluate
		Evaluation (implicit from self)

		Quote
		0
		No
		Inherit
		Quotation (implicit from context)

		Evaluate
		0
		No
		Inherit
		Evaluation (implicit from context)

		Any
		\(n > 0\)
		Yes
		Any
		\(n\)-chained evaluation

		Any
		\(n > 0\)
		No
		Evaluate
		\((n+1)\)-chained evaluation

		Any
		\(n > 0\)
		No
		Any
		\(n\)-chained evaluation

Where, by “\(n\)-chained evaluation”, we mean one evaluation of the term
at hand, and then \(n-1\)
indirect evaluations where the value
is fed through the chart to obtain the next value. The last of
these is taken to be the value of the chain as a whole. See
spec-indirect-evaluation for more details.

 © Copyright 2013, Jason Eisner, Nathaniel Wesley Filardo, Tim Vieira, et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.4.0

_static/ajax-loader.gif

_static/file.png

_static/logo.png
AV:- dyna.

_images/graphviz-7e01bea84d28f4fc3811c9f0a17433ce89af870c.png

_static/down-pressed.png

